Notizen / Notes

Natrium- und Kaliumfluorsilylamide – Synthese und Kristallstruktur

Ursula Pieper, Dietmar Stalke*, Susanne Vollbrecht und Uwe Klingebiel

Institut für Anorganische Chemie der Universität, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 11. Dezember 1989

Key Words: Fluorosilylamides of K, Na

Sodium and Potassium Fluorosilylamides - Synthesis and Crystal Structures

tert-Butyl(di-tert-butylfluorosilyl)amine (1) reacts with sodium or potassium to give the alkali salts 2 or 3, respectively. 2 and 3 crystallize as THF adducts and form head-to-tail dimers.

Von Alkalisalzen der Silylamine sind die Lithium-Verbindungen bisher am intensivsten untersucht worden. Fluor-funktionelle Natrium- und Kalium-silylamide waren aufgrund ihrer starken Neigung zur Salzeliminierung bisher unbekannt¹⁻⁴⁾. 1978 stellten wir als erstes Lithium-Derivat eines (Fluorsilyl)amins das Lithium-*tert*butyl(di-*tert*-butylfluorsilyl)amid⁵⁾ dar, das aus dem unpolaren Lösungsmittel Hexan als Tricyclus I⁶⁾ kristallisiert, während aus THF der Bicyclus II⁷⁾ erhalten wird, der aus einer Amino- und einer Iminosilan-Einheit besteht und in dem Lithium überdies sowohl in zweifacher als auch in vierfacher Koordination vorliegt.

Heute stellen wir die Synthese und das Ergebnis der Kristallstrukturanalysen der Natrium- und Kalium-Salze dieses (Fluorsilyl)amins vor.

Mit Natrium bzw. Kalium reagiert das (Fluorsilyl)amin 1⁵ in THF/Toluol zu den Alkali-(fluorsilyl)amiden 2 und 3 (Schema 1).

Sodium is tetracoordinated in 2 and potassium hexacoordinated in 3. The crystal structures of the alkali salts are discussed.

2 (Abb. 1) und 3 (Abb. 2) bilden im Kristall, im Gegensatz zur Lithium-Verbindung II jeweils symmetrische Kopf-Schwanz-verknüpfte Dimere. Das Inversionszentrum befindet sich im Mittelpunkt der Metall-Metall-Achse.

Abb. 1. Struktur von 2 im Kristall

In 2 sind die Natrium-Atome verzerrt tetraedrisch koordiniert. Sie sind mit beiden Stickstoff-Atomen, jedoch nur einem Fluor-Atom verbunden. Die vierte Koordinationsstelle wird von einem THF-Molekül abgesättigt. Der Abstand Na - F(1) muß mit 243.3 pm als bindend betrachtet werden, während Na - F(1a) mit 332.5 pm nur eine schwache Wechselwirkung darstellt (Tab. 1). Das System kann somit analog I als tricyclische Struktur interpretiert werden. In I ragen beide SiFLiN-Vierringe zur gleichen Seite aus der Ebene des zentralen Li₂N₂-Vierrings heraus. Der Strukturtyp kann als "Schmetterling" beschrieben werden. 2 dagegen bildet eine "Treppenstruktur" aus. Die Flächennormalen der beiden SiFNaN-Vierringe bilden mit der Flächennormalen des zentralen Na_2N_2 -Vierrings einen Winkel von jeweils 96.9°.

Abb. 2. Struktur von 3 im Kristall

Im Gegensatz zu 2 ist das Kalium-Atom in 3 sechsfach koordiniert. Hier bindet das Kalium-Atom sowohl beide Stickstoff-Atome als auch beide Fluor-Atome sowie zwei Moleküle THF. Die Abstände K-F(1) und K-F(1a) sind annähernd gleich und nur um ca. 8 pm länger als die K-N-Abstände. Die zentrale Einheit in 3 läßt sich daher als verzerrtes Oktaeder interpretieren, in dem die axialen Positionen von den Kalium-Atomen und die äquatorialen Positionen alternierend von N- und F-Atomen besetzt sind.

Die Si-N-Abstände in 2 (165.5 pm) und in 3 (166.7 pm) legen Doppelbindungsanteile nahe. Die Metall-Fluor-Kontakte in beiden Verbindungen führen zu einer Streckung der Si-F-Bindungen (Tab. 1). Diese Befunde stehen in Einklang mit den chemischen Verschiebungen in den NMR-Spektren: Gegenüber 1 werden auffällige ¹⁹F-Tieffeld- und ²⁹Si-Hochfeldverschiebungen beobachtet.

Tab. 1. Ausgewählte Bindungslängen [pm] und -winkel [°] der (Fluorsilyl)amide 2 und 3

	2 ($M = Na$)	3 (M = K)
N(1) - M(1)	249.7(2)	296.1(5)
N(1a) - M(1)	248.3(2)	295.8(5)
F(1) - M(1)	243.4(2)	306.4(4)
F(1a) - M(1)	332.5(2)	301.5(4)
Si(1) - N(1)	165.5(2)	161.7(5)
Si(1) - F(1)	165.6(1)	166.7(3)
Si(1) - N(1) - C	133.6(1)	137.3(4)

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Darstellung von Natrium- und Kalium-tert-butyl(di-tert-butyl fluorsilyl) amid (2 und 3): 2.3 g (0.01 mol) 1 und 0.5 g (0.005 mol) Styrol werden in 10 ml THF gelöst und zu 0.3 g (0.01 mol) Natrium bzw. 0.4 g (0.01 mol) Kalium in 30 ml THF getropft. Anschließend erhitzt man ca. 5 h zum Sieden bis das Metall verbraucht ist. Die Reaktionslösung wird mit 5 ml Toluol versetzt. Beim Abkühlen auf -8° C kristallisieren 2 und 3 als farblose Kristalle aus. 2: Ausb. 3.1 g (95%). $- {}^{1}$ H-NMR (C₆D₆): $\delta = 1.28$ [s, 18H, SiC(CH₃)₃], 1.36 [s, 4H, O(CH₂CH₂)₂], 1.49 [s, 9H, NC(CH₃)₃], 3.48 [s, 4H, O(CH₂CH₂)₂]. $- {}^{13}$ C-NMR (C₆D₆): $\delta = 22.72$ [d, J_{CF} = 23.1 Hz, SiCC₃], 25.47 [s, OC₂C₂], 29.80 [s, SiCC₃] 39.62 [s, NCC₃], 68.13 [s, OC₂C₂]. $- {}^{19}$ F-NMR (C₆D₆): $\delta = 7.95$. $- {}^{29}$ Si-NMR (C₆D₆): $\delta = -12.42$ [d, J_{SiF} = 239.26 Hz].

3: Ausb. 4.0 g (98%). $-{}^{1}$ H-NMR (C₆D₆): $\delta = 1.27$ [s, 18 H, SiC(CH₃)₃], 1.40 [s, 8H, O(CH₂CH₂)₂], 1.47 [s, 9H, NC(CH₃)₃], 3.50 [s, 8H, O(CH₂CH₂)₂]. $-{}^{13}$ C-NMR (C₆D₆): $\delta = 22.92$ [d, SiCC₃, $J_{CF} = 24.37$ Hz], 25.65 [s, OC₂C₂], 30.18 [s, SiCC₃] 39.57 [s, NCC₃], 67.78 [s, OC₂C₂]. $-{}^{19}$ F-NMR (C₆D₆): $\delta = 13.27$. $-{}^{29}$ Si-NMR (C₆D₆): $\delta = -20.19$ [d, $J_{SiF} = 237.55$ Hz].

Kristallstrukturen von 2 und 3⁸): Datensammlung erfolgte für beide Strukturen mit einem Stoe-Siemens-AED bei -85° C mit Graphit-monochromatisierter Mo- K_{α} -Strahlung. Strukturlösung und Verfeinerung wurden mit SHELX-86⁹) durchgeführt, alle Nichtwasserstoff-Atome wurden anisotrop verfeinert. Alle Wasserstoff-Atome wurden geometrisch ideal positioniert und als starre Gruppe nach einem Reitermodell mit festen Auslenkungsparametern in die Rechnungen einbezogen. Wegen einer Rotationsfehlordnung der drei endständigen C-Atome der am Stickstoff-Atom gebundenen *tert*-Butyl-Gruppe von Verbindung 3 wurden die Besetzungsfaktoren dieser Atome verfeinert und auf 0.6 bzw. 0.4 gesetzt.

2: $C_{32}H_{70}F_2N_2Na_2O_2Si_2$; M = 655.1 g mol⁻¹; triklin; $P\bar{1}$; a = 957.1(2), b = 1065.4(2), c = 1098.6(2) pm; $\alpha = 101.16(1)$, $\beta = 112.09(1)$, $\gamma = 97.10(1)^{\circ}$; V = 0.994 nm³; $Q_{ber.} = 1.094$ Mgm⁻³; Z = 1; μ (Mo- K_{α}) = 0.14 mm⁻¹; 4714 gesammelte Reflexe, davon 3487 unabhängige und 2960 beobachtete mit $F \ge 4\sigma(F)$; $2\Theta_{max} = 50^{\circ}$; Verfeinerung von 190 Parametern; R = 0.046, $R_w = 0.050$, $w^{-1} = \sigma^2(F) + 0.0003 \cdot F^2$; GOOF = 2.29; Restelektronendichte: $\pm 4.0 \times 10^2$ e nm⁻³; $\Delta/\sigma = 0.001$.

3: $C_{40}H_{86}F_2K_2N_2O_4Si_2$; $M = 831.5 \text{ g mol}^{-1}$; monoklin; $P2_1/n$; a = 1031.0(1), b = 1698.6(2), c = 1436.5(2) pm; $\beta = 97.98(1)^\circ$;

Tab. 2. Atomkoordinaten (\times 10⁴) und äquivalente isotrope Auslenkungsparameter (\times 10⁻¹) [pm²] von Verbindung 2

	x	У	z	U(eq)*
Na(1)	4069(1)	4144(1)	5425(1)	33(1)
Si(1)	4360(1)	7618(1)	2861(1)	27(1)
N(1)	3747(2)	9001(1)	3034(2)	27(1)
$\mathbf{F}(1)$	5386(1)	7689(2)	4477(1)	38(1)
C(1)	5918(2)	7561(1)	2160(2)	36(1)
C(11)	6677(3)	6383(2)	2344(3)	50(1)
G(12)	5310(3)	7552(3)	652(3)	51(1)
C(13)	7192(3)	8802(3)	2965(3)	51(1)
C(2)	2964(3)	5936(3)	2286(2)	38(1)
C(21)	1563(3)	6103(2)	2622(3)	51(1)
C(22)	2372(3)	5255(3)	766(3)	52(1)
C(23)	3734(3)	4982(3)	3081(3)	61(1)
C(3)	2547(2)	9524(3)	2111(2)	32(1)
C(31)	3272(3)	10813(2)	1950(3)	53(1)
C(32)	1666(3)	8609(3)	682(2)	48(1)
C(33)	1380(3)	9807(3)	2714(3)	52(1)
0(1)	2357(2)	7869(3)	5985(2)	39(1)
C(4)	737(3)	7841(2)	5565(3)	49(1)
C(5)	222(4)	7069(3)	6364(5)	87(2)
C(6)	1425(3)	6432(4)	7000(4)	70(2)
C(7)	2748(3)	6957(4)	6758(4)	82(2)

 Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii}-Tensors.

Natrium- und Kaliumfluorsilylamide

Tab. 3. Atomkoordinaten (× 10^4) und äquivalente isotrope Auslen-kungsparameter (× 10^{-1}) [pm²] von Verbindung 3

	x	У	z	Ŭ(eq)*
K(1)	5727(1)	4075(1)	5013(1)	45(1)
Si(1)	5408(2)	5225(1)	2894(1)	41(1)
F(1)	6417(3)	5489(2)	3852(2)	58(1)
N(1)	4210(5)	4849(3)	3363(3)	46(2)
C(1)	6542(6)	4542(5)	2307(4)	52(3)
C(2)	6663(7)	3763(5)	2835(5)	67(3)
C(3)	7950(7)	4869(6)	2366(7)	108(4)
C(4)	6417(9)	6661(5)	2210(8)	136(6)
C(5)	5173(7)	6230(4)	2268(5)	57(3)
C(6)	4310(10)	6729(5)	2770(6)	106(5)
C(7)	4462(10)	6170(6)	1280(6)	117(5)
C(8)	6071(10)	4361(6)	1285(5)	109(4)
C(9)	2933(7)	4482(5)	3038(5)	60(3)
C(10)	2744(15)	3805(11)	3701(11)	87(7)
C(11)	2921(14)	4095(12)	2096(10)	91(7)
C(12)	1872(13)	5067(10)	3021(17)	99(9)
C(21)	1892(23)	4777(16)	3701(16)	77(10)
C(22)	2250(20)	4760(18)	2062(16)	98(11)
C(23)	3015(22)	3638(16)	3021(20)	80(11)
0(1)	511 2(5)	2462(3)	4857(4)	81(2)
C(13)	5713(10)	2002(5)	4254(7)	99(4)
C(14)	5450(11)	1209(6)	4438(9)	142(7)
C(15)	4413(9)	1175(6)	5016(7)	99(4)
C(16)	4088(10)	1994(6)	5118(9)	137(6)
0(2)	8257(4)	3402(3)	5176(3)	63(2)
C(17)	9411(7)	3713(5)	4886(6)	78(3)
C(18)	10519(8)	3415(6)	5535(7)	99(4)
C(19)	8657(8)	2806(5)	5839(7)	89(4)
C(20)	9967(9)	3014(6)	6239(7)	114(5)
			· · · · · · · · · · · · · · · · · · ·	

Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

 $V = 2.491 \text{ nm}^3$; $\varrho_{\text{ber.}} = 1.108 \text{ Mgm}^{-3}$; Z = 2, $\mu(\text{Mo-}K_{\alpha}) = 0.28$ mm⁻¹; 4692 gesammelte Reflexe, davon 3236 unabhängige und 2048 beobachtete mit $F \ge 3\sigma(F)$; $2\Theta_{\text{max}} = 45^{\circ}$; Verfeinerung von 262 Parametern; R = 0.0833, $R_w = 0.0675$, $w^{-1} = \sigma^2(F) + 0.0003$ F^2 ; GOOF = 2.00; Restelektronendichte: $\pm 4.6 \times 10^2$ e nm⁻³; $\Delta/\sigma = 0.001.$

Tab. 2 und 3 geben die Koordinaten und Auslenkungsparameter der Verbindungen 2 und 3 wieder.

CAS-Registry-Nummern

2: 125848-38-6 / 2 (Salz): 125848-36-4 / 3: 125848-39-7 / 3 (Salz): 125848-37-5

- ¹⁾ R. Grüning, J. L. Atwood, J. Organomet. Chem. 137 (1977) 101.
- ²⁾ W. Clegg, R. E. Mulvey, R. Snaith, G. E. Toogood, K. Wade, J. Chem. Soc., Chem. Commun. **1986**, 1740.
- ³⁾ A. M. Domingos, G. M. Sheldrick, Acta Crystallogr., Sect. B, 30 (1974) 517.
- ⁴⁾ M. Veith, J. Bohnlein, V. Huch, Chem. Ber. 122 (1989) 841.
- ⁵⁾ U. Klingebiel, A. Meller, Angew. Chem. **88** (1976) 307; Angew. Chem. Int. Ed. Engl. **15** (1976) 312.
- ⁶⁾ D. Stalke, N. Keweloh, U. Klingebiel, M. Noltemeyer, G. M. Sheldrick, Z. Naturforsch., Teil B, 42 (1987) 1237. ⁷⁾ D. Stalke, U. Klingebiel, G. M. Sheldrick, J. Organomet. Chem.
- 344 (1988) 37.
- ⁸⁾ Weitere Einzelheiten zu den Strukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320082/320083, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ⁹⁾ G. M. Sheldrick, SHELX-86, Universität Göttingen, 1986.

[401/89]